Neural Network for Principal Component Analysis with Applications in Image Compression
نویسنده
چکیده
Classical feature extraction and data projection methods have been extensively investigated in the pattern recognition and exploratory data analysis literature. Feature extraction and multivariate data projection allow avoiding the “curse of dimensionality”, improve the generalization ability of classifiers and significantly reduce the computational requirements of pattern classifiers. During the past decade a large number of artificial neural networks and learning algorithms have been proposed for solving feature extraction problems, most of them being adaptive in nature and well-suited for many real environments where adaptive approach is required. Principal Component Analysis, also called Karhunen-Loeve transform is a well-known statistical method for feature extraction, data compression and multivariate data projection and so far it has been broadly used in a large series of signal and image processing, pattern recognition and data analysis applications.
منابع مشابه
Combined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملآموزش شبکه عصبی MLP در فشردهسازی تصاویر با استفاده از روش GSA
Image compression is one of the important research fields in image processing. Up to now, different methods are presented for image compression. Neural network is one of these methods that has represented its good performance in many applications. The usual method in training of neural networks is error back propagation method that its drawbacks are late convergence and stopping in points of lo...
متن کاملNew Approaches for Image Compression Using Neural Network
An image consists of large data and requires more space in the memory. The large data results in more transmission time from transmitter to receiver. The time consumption can be reduced by using data compression techniques. In this technique, it is possible to eliminate the redundant data contained in an image. The compressed image requires less memory space and less time to transmit in the for...
متن کامل